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Leading article

Cellulose and the human gut

Cellulose consists of long unbranched chains of glucose, (1-4) a linked
D-glucopyranose. In its pure form the straight chains are bound closely
together by multiple intermolecular hydrogen bonds producing a water
insoluble fibrous substance which is relatively inert. Modified celluloses
such as ethyl and carboxymethyl derivatives, (widely used in the food
industry), and methyl cellulose (which may.be prescribed as a laxative or as
an appetite suppressant), have very different chemical properties from
pure cellulose. Their substituent groups disrupt the hydrogen bonding and
the resulting compounds are more soluble. Much less is known of their fate
and importance in the human gut. Cellulose is found in abundance in
nature in virtually all plant tissues and is therefore a common component
of our diet. Dietary cellulose is thought not to be digested in the stomach
and small intestine, 85% being recoverable in ileostomy contents from
subjects fed diets containing usually eaten foods.1 2 In the large intestine
however, it is fermented3-5 by the microflora with the ultimate production
of short chain fatty acids, hydrogen, carbon dioxide and methane.6 7
The metabolism of cellulose in man has long been a focus of interest, but

progress has been hindered by a lack of accurate chemical methods for its
measurement. Another reason is that native cellulose, as present in the
plant cell wall, behaves differently in the gut from purified preparations
which are extracted, usually by harsh treatments, from wood pulp. In this
issue Kelleher et al (p 816) report their studies in which a single dose of
14C-cellulose was given to each of 10 healthy subjects, who then collected
faeces and breath samples for seven days in order to determine the extent
of cellulose digestion and metabolism. Total recovery of 14C was 73%, of
which 57% was in faeces and 16% in breath. Wide variation was recorded
between individuals, for example 47-80% of the dose was recovered in
faeces. A surprising observation was the appearance in breath of 14Co2
within one hour of the test dose of 14C-cellulose.
The labelled cellulose was prepared by exposing a growing plant to

14Co2 for 24 hours, then harvesting the leaves and isolating the polymer.
Even after an extensive series of treatments to purify the cellulose the
authors, to their credit, however, noticed that it still contained starch
granules when they received it and they were able tQ remove a further 30%
of the radioactivity by gelatinisation, starch hydrolysis and acid washing.
The final radiochemical purity of the preparation is not reported, so that it
remains possible that the test substance still contained small amounts of
non-cellulosic material, which might account for the early appearance of
14C02 in breath, as the authors suggest. In this case the actual digestibility
of the cellulose would have been less than the observed 43% On the other
hand the exact .chemical form of the 14C excreted in faeces is unknown.
Seven per cent was in the aqueous phase of stool, probably incorporated
into a variety of low molecular weight substances, while in the solid phase
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the 14C could be present in a number of forms such as microbial solids,
undegraded cellulose, etc. In the absence of more precise information the
degradability of this cellulose will probably be underestimated.

In the only comparable study of isotopically labelled cellulose
degradation in the human gut, Carryer et at8 used cellulose labelled with
131iodine, prepared from filter paper as the iodobenzhydryl derivative.
They recovered 87% of this material from the faeces of their subjects in
five days. Again the chemical form of the isotope in faeces was not
determined, leaving some doubt as to the extent of any degradation.
Ample evidence for breakdown of cellulose in man has been acquired by

non-isotopic techniques and has been reviewed elsewhere.9 Balance
studies in humans where intake of dietary cellulose and faecal excretion
have been measured and the source of cellulose was commonly eaten
foods, such as fruit and vegetables and refined cereals, cellulose
digestibility was of the order of 70-80%.5 These and other reports have
not unnaturally led to the study of cellulose metabolism in man in more
detail, using purified forms of cellulose. Such preparations of cellulose
have very different physical properties from the cellulose present in the
plant cell wall and so lead to conflicting views of the role of cellulose in the
gut. For example, in the work of Van Soest's group10 11 in which healthy
volunteers were fed controlled diets with the addition of cellulose from
either cabbage, bran, or a purified cellulose (Solka Floc), average cellulose
digestibility was 74% on the control diet, 75% in the cabbage, about 53%
in the bran but only 25% from the Solka Floc. Moreover, the purified
cellulose depressed the breakdown of other cell wall polysaccharides and
reduced cellulose digestion in the subjects when they were changed to
other diets. The capacity of colonic microorganisms to digest cellulose in
vitro was also tested and in these studies the purified cellulose was virtually
indigestible, while that from cabbage was extensively degraded. Similar
findings were reported in 1936 by Williams and Olmsted' who fed three
medical students cellulose from a wide range of food sources and observed
that while 60-70% from carrot and cabbage was digested only 0-10% of a
purified cellulose was broken down and 3-25% from cotton seed hulls.

In a different approach Betian et al13 tried to isolate cellulolytic bacteria
from the faeces of five human subjects using conventional microbial
techniques. Only one subject apparently possessed such an organism. The
test substance, however, was a purified cellulose obtained by making a
slurry of Whatman no 1 filter paper. These findings contrast with those
from balance studies of individuals, in which it is exceptional to find that
cellulose from the plant cell wall is not degraded. Therefore the gut must
almost universally contain cellulolytic bacteria. In studies on ruminants14
purified celluloses are degraded much more slowly than those present in
the cell wall and show a 10-15 hour lag before the onset of fermentation, a
feature not seen in forage celluloses. Therefore, purified celluloses, while
providing a more controlled approach to the study of cellulose metabolism,
behave quite differently from native cell wall material. Perhaps
experiments using purified, or modified material should not be directly
extrapolated to what is going on during normal digestion.
Breakdown of cell wall cellulose is modified by several factors other than

its chemical purity. In studies on ruminants the presence of lignin, cutin
and silica all impair fermentation,157 while in man the relative resistance
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of cellulose, and other cell wall polysaccharides, of wheat bran to
digestion5 10 12 can be explained partly by its high lignin content relative to
other human foods. Bran is about 3% lignin, while most fruit and
vegetables contain only one-tenth of this amount.'8 The particle size of
preparations containing cellulose also modify its rate of breakdown. When
Heller et al19 fed wheat bran to healthy volunteers at two different particle
sizes, the cellulose in the coarse bran was only 6% digested, compared with
23% in the same bran finely ground. Surprisingly, the reverse happens in
the ruminant, where fine particles leave the rumen earlier than coarse
particles, being swept out more readily with the ruminant liquor and so
spend less time in the gut and are less completely digested. Fine grinding of
animal feeds therefore reduces their nutritional value.20
The time that cellulose spends in the gut fermentation chamber, whether

that be the rumen, or the large intestine, is therefore important in
determining the extent of its breakdown. This is certainly so in rumen
studies'4 21 and evidence is also accumulating for this in man. In 1943
Hummel et a122 noted that digestibility of cellulose was proportional to
laxation rate (frequency of defacation), less cellulose being digested in
subjects who had more frequent bowel actions.
More recently Southgate and Durnin23 observed that elderly men

digested cellulose to a much greater extent than did young men and
commented that transit of a marker dye through the gut was slower in the
old. This hypothesis has been tested experimentally by Stephen,24 who
gave six healthy subjects a controlled diet containing ordinary foods and
measured cellulose digestion and mean transit time. She then speeded up
transit by giving the volunteers Senakot and found that when transit time
fell from 64 hours (control) to 35 hours (+ Senna), cellulose breakdown
fell from 72% (control) to 48% (+ Senna). Kelleher et al in their paper in
this issue chose to measure the metabolism of 14C cellulose in two groups
of volunteers, the elderly (average age 79 years), and the young (average
age 44 years), in an attempt to explain the variation in digestibility between
individuals. Cumulative recovery of 1"C02 in breath was significantly
greater in the elderly (23% elderly vs 10% young) and faecal recovery was
lower (52% elderly vs 64% young). This may indicate increased
degradation in the elderly, provided that the assumptions made by the
authors that CO2 excretion of 9 mmol/kg body weight/h is equally true in
both the age groups. Transit time measured as the recovery of 80% of an
oral dose of radio-opaque pellets, was not significantly related to faecal
cellulose recovery, although the data for transit are not given in the paper.
In Stephen's studies24 prolonging transit time from 47-88 hours with
codeine phosphate did not significantly alter cellulose digestion (70%
control vs 75% + codeine phosphate) and overall she has shown that when
transit time is greater than about 50 hours the digestion of the cellulose fed
in her study reached a plateau of about 75%.

Is there a physiological role for cellulose in the gut? In contrast with
other cell-wall polysaccharides, purified cellulose, when given in
reasonable quantities does not lower serum cholesterol concentration in
man,2527 and only minimally increases faecal bile acid excretion.27 28 Bile
acids do not bind to cellulose in vitro.29 By contrast, pure cellulose seems
to impair absorption of minerals from the gut, when doses of between 10
and 21 g/day are given to healthy volunteers with controlled diets. Faecal
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excretion of calcium, magnesium, iron, zinc and phosphate are increased
and serum calcium, inorganic phosphate and iron concentrations fall.3>32
Cellulose impairs glucose absorption in the rat,33 34 but comparable studies
have not been done in man.
The effects of cellulose on the large intestine have been studied in more

detail. Doses of purified cellulose from 15-20 g/day given to volunteers in
long term feeding studies lead to modest increases in stool output,
shortening of transit time and a fall in stool pH.27 31 3 In some animal
studies cellulose may prevent colon cancer.38 The mode of action of
cellulose in the large intestine is probably related to its digestibility,
because the water holding capacity of the material is very limited. 9
Breakdown of cellulose in the colon stimulates microbial growth, while any
undigested cellulose provides a surface for bacteria, which may lead to the
growth of specialised subpopulations.40 Fermentation of cellulose, which
requires a complex interaction of micro-organisms,41 eventually produces
short chain fatty acids: their importance has been reviewed elsewhere.42

Clearly cellulose can change gut function in man, and especially function
of the large intestine. In practice, however, cellulose is present in our diet
as part of the plant cell wall, where it is closely associated with many other
carbohydrate polymers. In this form its effects are less predictable and
more difficult to determine. Moreover the amount of cellulose in the
United Kingdom diet is substantially smaller than that commonly used in
experimental diets. Measuring the intake of cellulose in man is not easy,
because of the difficulties of chemical analysis: published values for the
cellulose content of commonly eaten foods vary 10-fold.18 43 44 The best
available analytical techniques, however, indicate that cellulose rarely
contributes more than 20% of dietary plant cell wall polysaccharides.
Using these methods of analysis cellulose intake in the UK population is
4.7 g/day on average, while in four Scandinavian populations cellulose
intake ranged from 3*2-4-2 g/day.45 46 These quantities of cellulose are
small and are unlikely to contribute to significant changes in gut function,
or metabolism, independently of other cell wall polysaccharides. Whether
native cellulose has unique properties in the human gastrointestinal tract
remains to be established.
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